Human Reproduction Archives
https://www.humanreproductionarchives.com/article/doi/10.4322/hra.001818
Human Reproduction Archives
Research Article Assisted Reproduction

DETERMINE DNA FRAGMENTATION IN NORMOSPERMIC AND OLIGOSPERMIC SAMPLES: A PILOT STUDY

Nida Zahid, Uroosa Tariq, Mohammad Tahir, Syed Sajjad Hussain, Rehana Rehman

Downloads: 1
Views: 850

Abstract

Introduction: Assisted reproductive technologies (ART) plays an imperative role in infertility management. The success of ART depends on the interplay of several factors for the sustainability of sperm functions. A motile and morphologically normal sperm may have DNA fragmentation. The objective of our pilot study was to determine the status of DNA fragmentation of sperms among men presenting to an infertility Centre in Karachi, Pakistan. Assisted reproductive technologies (ART) plays an imperative role in infertility management. Methods: We conducted a pilot study at the Australian Concept Infertility Medical Centre (ACIMC), Karachi, Pakistan. We recruited 7 oligozoospermic samples and 3 normozoospermic samples according to WHO criteria (2010). The (DNA Fragmentation Index) DFI was assessed by the sperm chromatin dispersion test (SCD). The cut off for which were; < 15% fragmentation (normal), 15-30% (moderate fragmentation) and ≥ 30% (severe DNA fragmentation). Results: DNA fragmentation was not significantly different in normozoospermic and oligospermic sample (p value=0.3). A higher proportion of oligospermic males had non-normal forms of sperms with severe DNA fragmentation i.e 5 out 7 while the normozoospermic sample had a higher proportion of normal forms of sperms with severe DNA fragmentation i.e 2 out of 3. There was moderate negative correlation between fragmented DNA % and live count rho = - 0.642 (p value=0.045). Conclusion: We conclude that it is essential to measure the sperm DNA fragmentation when evaluating the morphologically normal cell. In future male infertility should be diagnosed based on conventional seminological parameters as well as DNA fragmentation analysis.

Keywords

DNA fragmentation, DNA Fragmentation Index, Morphology, Normozoospermic, Oligospermic, Pilot Study

References

1. Rehman R, Zafar A, Fatima SS, Mohib A, Sheikh A. Altered sperm parameters and subclinical hypothyroidism: a cross sectional study in Karachi, Pakistan. Int J Clin Pract. 2020;74(9):e13555. http://dx.doi.org/10.1111/ijcp.13555. PMid:32453880.

2. Varghese A, Bragais F, Mukhopadhyay D, Kundu S, Pal M, Bhattacharyya AK, et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009;41(4):207-15. http://dx.doi.org/10.1111/j.1439-0272.2009.00917.x. PMid:19601931.

3. Nayan M, Punjani N, Grober E, Lo K, Jarvi K. The use of assisted reproductive technology before male factor infertility evaluation. Transl Androl Urol. 2018;7(4):678-85. http://dx.doi.org/10.21037/tau.2018.06.08. PMid:30211059.

4. Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006;22(2):133-41. http://dx.doi.org/10.1016/j.reprotox.2006.04.016. PMid:16806807.

5. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14(1):32-9. http://dx.doi.org/10.1038/aja.2011.66. PMid:22120929.

6. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027-36. http://dx.doi.org/10.1016/j.fertnstert.2009.10.046. PMid:20080235.

7. Dohle GR, Colpi GM, Hargreave TB, Papp GK, Jungwirth A, Weidner W. EAU guidelines on male infertility. Eur Urol. 2005;48(5):703- 11. http://dx.doi.org/10.1016/j.eururo.2005.06.002. PMid:16005562.

8. Poongothai J, Gopenath TS, Manonayaki S. Genetics of human male infertility. Singapore Med J. 2009;50(4):336-47. PMid:19421675.

9. Gianaroli L, Magli MC, Cavallini G, Crippa A, Nadalini M, Bernardini L, et al. Frequency of aneuploidy in sperm from patients with extremely severe male factor infertility. Hum Reprod. 2005;20(8):2140-52. http://dx.doi.org/10.1093/humrep/dei033. PMid:15845594.

10. Avendaño C, Oehninger S. DNA fragmentation in morphologically normal spermatozoa: how much should we be concerned in the ICSI era? J Androl. 2011;32(4):356-63. http://dx.doi.org/10.2164/jandrol.110.012005. PMid:21088229.

11. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17-8. http://dx.doi.org/10.1016/0140-6736(92)92425-F. PMid:1351601.

12. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727-33. http://dx.doi.org/10.1016/S1472-6483(10)60676-1. PMid:17579989.

13. Tang S, Gao H, Zhao Y, Ma S. Aneuploidy and DNA fragmentation in morphologically abnormal sperm. Int J Androl. 2010;33(1):e163-79. http://dx.doi.org/10.1111/j.1365-2605.2009.00982.x. PMid:19732195.

14. Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077-84. http://dx.doi.org/10.1016/j.fertnstert.2008.01.015. PMid:18440529.

15. Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549-57. http://dx.doi.org/10.1016/j.fertnstert.2009.02.050. PMid:19339003.

16. Bach PV, Schlegel PN. Sperm DNA damage and its role in IVF and ICSI. Basic Clin Androl. 2016;26(1):15. http://dx.doi.org/10.1186/s12610-016-0043-6. PMid:27980786.

17. Cooper TG, Noonan E, Von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231-45. http://dx.doi.org/10.1093/humupd/dmp048. PMid:19934213.

18. Fernández JL, Johnston S, Gosálvez J. Sperm Chromatin Dispersion (SCD) Assay. A Clinician’s Guide to Sperm DNA and Chromatin Damage. Springer, 2018, pp.137-152. . http://dx.doi.org/10.1007/978-3-319-71815-6_8.

19. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27(1):53-9. http://dx.doi.org/10.2164/jandrol.05068. PMid:16400078.

20. Samplaski MK, Dimitromanolakis A, Lo KC, Grober ED, Mullen B, Garbens A, et al. The relationship between sperm viability and DNA fragmentation rates. Reprod Biol Endocrinol. 2015;13(1):42. http://dx.doi.org/10.1186/s12958-015-0035-y. PMid:25971317.

21. Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357-60. http://dx.doi.org/10.1111/j.2047-2927.2012.00041.x. PMid:23596042.

22. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33(1):e221-7. http://dx.doi.org/10.1111/j.1365-2605.2009.00995.x. PMid:19840147.

23. Ding G-L, Liu Y, Liu M-E, Pan JX, Guo MX, Sheng JZ, et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948-53. http://dx.doi.org/10.4103/1008-682X.150844. PMid:25814158.

24. Komiya A, Kato T, Kawauchi Y, Watanabe A, Fuse H. Clinical factors associated with sperm DNA fragmentation in male patients with infertility. ScientificWorldJournal. 2014;2014:868303. http://dx.doi.org/10.1155/2014/868303. PMid:25165747.

25. Zahid N, Saleem S, Azam I, Moatter T. Association of obesity with Infertility among Pakistani men: a case control study. Open J Epidemiol. 2015;5(3):204-15. http://dx.doi.org/10.4236/ojepi.2015.53025.


Submitted date:
10/25/2018

Accepted date:
09/26/2020

5fce1b980e88254b46d6e534 hra Articles
Links & Downloads

Hum Reprod Arch

Share this page
Page Sections